
Scientific Journal of Civil Engineering • Volume 8 • Issue 2 • December 2019 
 

Vertical Vibrations of Rectangular Flexible Foundation on Viscoelastic Halfspace   81 | P a g e  
 

Marko Radisic 

University of Belgrade 

Bulevar kralja Aleksandra 73, 11000 Belgrade 

mradisic@grf.bg.ac.rs 

Mira Petronijevic 

University of Belgrade 

Bulevar kralja Aleksandra 73, 11000 Belgrade 

pmira@grf.bg.ac.rs 

Gerhard Muller 

Technical University of Munich 

Arcisstr. 21, 80333 Munich 

gerhard.mueller@tum.de 

 

 

 

 

 

VERTICAL VIBRATIONS 
OF RECTANGULAR 
FLEXIBLE FOUNDATION 
ON VISCOELASTIC 
HALFSPACE 

This paper presents a novel method, ITM-
DSM, for the soil-foundation interaction 
problems analysis. It is a semi-numerical 
method based on the coupling of the Integral 
Transform Method (ITM) and the Dynamic 
Stiffness Method (DSM). The stiffness matrix 
of the soil-foundation system is obtained using 
the substructure technique. The ITM is used to 
obtain the solution of the wave propagation in 
the soil, while the DSM is used to calculate the 
dynamic stiffness matrix of the foundation. 
Both methods are operating in the frequency 
domain what makes them suitable for 
coupling. The number of numerical operations 
in the frequency domain is reduced by the 
application of the modal superposition 
technique. The analysis of vertical vibrations of 
flexible foundations resting on the viscoelastic 
half-space is presented. The formulation of the 
method could be generalized for horizontal 
and rocking vibrations. It could be also 
reduced to the problem of flexible strip 
foundations of infinite length. 

Keywords: integral transform method, dynamic 
stiffness method, fourier transforms, modal 
superposition method, substructure method 

1. INTRODUCTION 

The effects of soil-structure interaction (SSI) 
are not negligible in general [1]. The soil is the 
integral part of the system and it has an 
influence on its response. Due to the different 
nature of the soil and the structure, the SSI 
problems are usually solved using the 
substructure technique: the substructures are 
modeled independently and then coupled 
applying available boundary conditions. 

The modeling of the soil medium is complex in 
general, but especially in dynamic analysis. 
The soil must be presented as an unbounded 
medium so that the energy propagates from 
the source of vibrations towards the infinity. 
The traditional modeling techniques, such as 
the Finite Element Method, cannot address 
this problem well [2]. That led to the 
development of new methods such as the 
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Integral Transform Method (ITM) [3]. The ITM 
is based on solving Lamé’s differential 
equations of motion, decoupling them using 
the Helmholtz decomposition and transforming 
them from partial to ordinary differential 
equations by a threefold Fourier Transform. 
The ordinary differential equations are solved 
in the transformed wavenumber-frequency 
domain by taking into account the boundary 
conditions of the system. The solution is 
transferred in the original space-time domain 
by threefold inverse Fourier Transform [4]. 

The SSI problems could be reduced to the 
soil-foundation interaction (SFI) problems. In 
the case of a surface, rigid foundation, the 
problem could be easily solved considering the 
foundation as a part of the soil surface, and 
applying kinematic transforms [5]. Since the 
foundation is always flexible up to a certain 
level, it is important to investigate the influence 
of the foundation stiffness on the response of 
the SFI system. The dynamic response of 
flexible foundations was investigated mainly by 
using the boundary element method [6] [7] [8] 
and finite element method [9] [10] [11]. In this 
paper a novel ITM-DSM [12] [13] [14] is used 
to solve that problem. 

The DSM [6] is based on the exact solution of 
the governing differential equations of motion 
in the space-frequency domain. This results in 
the exact frequency dependent shape 
functions of a dynamic stiffness element. The 
dynamic stiffness matrices of elements are 
also frequency dependent and can be 
developed explicitly for one-dimensional beam 
elements and Levy-type plates. Only one 
element is sufficient to represent the dynamic 
behavior at any frequency. In the case of 
plates with arbitrary boundary conditions, the 
plate displacements are presented in infinite 
series form, and the boundary problem is 
solved using the Projection method [15]. 

Both ITM and DSM are operating in the 
frequency domain what makes them suitable 
for coupling. The coupling of the foundation 
and the soil is established using the dynamic 
modal stiffness matrix of the soil. The SFI 
problem is solved using the modal 
superposition technique [16]. 

This paper presents the formulation of the 
ITM-DSM for rectangular surface foundations. 
The proposed method is used for obtaining the 
response of the SFI system in terms of 
dimensionless displacements in characteristic 
points of the foundation. The results for 
displacements have been validated against 
the existing data from the literature. 

2. FORMULATION 

The formulation is derived by observing 
vertical vibrations of a rectangular flexible 
foundation on the surface (z=0) of an elastic, 
homogeneous and isotropic half-space. It is 
assumed that the foundation behaves as a 
Kirchhoff plate. The steady state analysis of 
the response of the foundation is performed in 
the frequency domain, (x, y, ω). The response 
of the soil medium is obtained in the 
wavenumber-frequency domain (kx , ky , z, ω). 
It is understood that all functions are ω 
dependent, regarding the steady state 
analysis. Therefore, the ω variable is omitted 
in the notation of the functions.  

 

Figure 1. Disposition of the problem 

The differential equation of the problem in (x, 
y, ω) domain is given by 
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where D denotes the bending stiffness, w(x, y) 
is the displacement field, ρ is the material 
density and h is the thickness of the plate. The 
bending stiffness of the Kirchhoff plate is 
defined as 
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where E is Young’s modulus and ν is 
Poisson’s coefficient of the plate. The 
functions w(x,y), p(x,y) and q(x,y) are the 
transverse deflection of the foundation, the 
vertical load and the soil reaction, respectively. 
They can be expanded in a series of free 
vibration modes as follows: 



Scientific Journal of Civil Engineering • Volume 8 • Issue 2 • December 2019 
 

Vertical Vibrations of Rectangular Flexible Foundation on Viscoelastic Halfspace   83 | P a g e  
 

0

0

0

( , ) ( , )

( , ) ( , ) ,

( , ) ( , )

N

n n

n

N

n n

n

N

n n

n

w x y Y x y

p x y P x y

q x y Q x y

























                               (3) 

where 
n (x) represents the orthonormalized 

mode shape of the foundation for the nth mode 
and Yn , Pn and Qn are modal coefficients: 
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The mode shapes of the foundation are 
obtained for the case of free vibrations of the 
completely free plate, solving the eigenvalue 
problem by using the DSM [17]. The general 
solution of the problem is of the form 

( , ) ynxn
k yk x

n x y e e                                               (5) 

where kxn and kyn are wavenumbers in x and y 
direction, such that 
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The problem is solved by introducing an 
infinite series of base solution in the (kx

2, ky
2) 

plane [18]. Figure 2 shows the first eight mode 
shapes of a Kirchhoff plate. The first mode is a 
translational mode. 

Substituting equations (3) and (5) into Eq. (1) 
gives 
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Since mode shapes 
n (x) are orthonormal, for 

a uniform mass distribution, equation (7) can 
be decoupled into N equations by multiplying 

with mode shape 
m (x) and integrating over 

the area of the foundation. That gives the 
system of N equations, written in matrix form: 

       2D h        
4
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Figure 2. Free vibrations mode shapes of a 
rectangular foundation for n = 1-8 

where {Y}, {P} and {Q} are coefficient vectors 
of the modal displacement, the load and the 
soil reaction, respectively, [I] is identity matrix 
and [k4] is the pure bending wavemode 
wavenumber matrix of the plate 
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In equation (9), ωN are natural frequencies of 
the plate, obtained using the DSM [19]. 

Relation between displacements and soil 
reaction coefficient vectors can be defined as 
follows 

[ ]{ } { }sK Y Q                                              (10) 

Substituting (10) into (8) the equation of 
motion becomes 

       2

fD m        
4

Sk I K Y P            (11) 

In equations 10 and 11 [Ks] is the modal 
impedance matrix of the soil, obtained using 
ITM [14]. Once the modal impedance matrix of 
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the soil is formed, the displacement coefficient 
vector {Y} is obtained by solving the system of 
equations (10) and finally the displacement 
field w(x,y) is obtained by using equation (3). 
To obtain the displacement field spectrum, the 
procedure should be repeated for every 
frequency in a desired frequency range. 

A computer program based on this formulation 
is developed in MATLAB [20]. The results of 
the analysis are presented in terms of 
dimensionless displacements, in order to verify 
the response of the system with the results 
from the literature. 

3. NUMERICAL EXAMPLE 

In this section the vertical displacements of a 
square, massless, surface foundation excited 
by a uniformly distributed load are shown, see 
Figure 1. The damping mechanism is 
introduced by using a complex modulus with 
the damping coefficient ξ = 1%. The analysis is 
performed by taking into account eight shape 
modes of the foundation shown in Figure 2. 
Since the problem is axi-symmetrical, only axi-
symmetrical mode shapes are used. 

The vertical displacement fields of the 
foundation obtained using the proposed 
method are compared with the results 
obtained by Whittaker and Christiano (W&C) 
[9]. They have modelled the foundation using 
thin plate finite elements. The displacements 
of a uniformly loaded plate are observed in 
three points: centre, edge midway and corner, 
Figure 3.  

 

Figure 3. Characteristic points of the foundation 

The results are presented in a dimensionless 

form, ∆i(a0), where ∆i is the dimensionless 
vertical displacement at the point i 
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and a0 is the dimensionless frequency 
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In equations (11) and (12) w is the 
displacement, Gs is the shear modulus of the 
soil, νs is Poisson’s coefficient of the soil, ∑Fext 
is the resultant of the external force in vertical 
direction, and cs is the shear wave velocity in 
the soil. 

The results are obtained for different 
foundation-soil stiffness ratios K introduced by 
Whittaker and Christiano 
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where E is Young’s modulus and ν is 
Poisson’s coefficient of the plate. 

Using the proposed method, the analysis is 
performed for K = 0, 0.004, 0.06, 3.3 and the 
results are shown in Figures 4-7. The case of 
K=0 corresponds to the analysis of the soil 
only (without foundation),. For K≥3.3 the 
foundation is considered rigid. 

The results obtained by the proposed method 
are in a good agreement with the results from 
the literature. In general, with an increase of 
the relative stiffness K the displacements of 
the foundation become less spatially 

dependent. In the frequency range 0<a0<4, for 
K=0, the proposed method gives lower 
amplitudes of the displacement at the centre of 
the foundation compared to the displacements 
from literature. For K>0, the displacement 
amplitudes at the centre of the foundation tend 
to be higher than in literature, as opposed to 
the displacement amplitudes of the edge point 
and corner point. The differences between the 

results increase with the increase of K and a0. 

In the frequency range a0>4, the highest 
discrepancies between obtained results and 
results from literature are observed at the 
corner of the foundation. This is the point of 
significant stress concentration that is very 
difficult to model properly [21]. 
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4. CONCLUSIONS 

This paper presents an efficient semi-
analytical method for obtaining the dynamic 
response of rectangular foundations resting on 
the surface of half-space. The method is 
based on the modal decomposition. The 
Dynamic Stiffness Method is used for 
obtaining mode shapes of the foundation. The 
impedance matrix of the soil is obtained by 
using the Integral Transform Method. The 
comparison of the results obtained using the 
proposed method with the results from the 
literature shows that the proposed method 
provides accurate results with low 
computational effort. The method could be 
easily reduced to problems of a strip 
foundation resting on a homogeneous or 
horizontally layered half-space as well as 
extended to the analysis of coupled horizontal 
and vertical vibrations problems. 

 

Figure 4. W&C - ITM-DSM comparison of the 
displacements of the characteristic points of the 

foundation, K = 0 

 

Figure 5. W&C - ITM-DSM comparison of the 
displacements of the characteristic points of the 

foundation, K = 0.004 

 

Figure 6. W&C - ITM-DSM comparison of the 
displacements of the characteristic points of the 

foundation, K = 0.06 

 

Figure 7. W&C - ITM-DSM comparison of the 
displacements of the characteristic points of the 

foundation, K = 3.3 
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