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DEVELOPMENT OF  
DYNAMIC STIFFNESS 
METHOD FOR FREE  
VIBRATION ANALYSIS OF 
PLATE STRUCTURES 

In the paper, an overview of the development of 
the dynamic-stiffness-method-based computa-
tional model for the free vibration analysis of 
plates has been presented. Starting from sev-
eral formulations of the so-called dynamic stiff-
ness elements, formulated at the Institute for 
Numerical Analysis and Design of Structures 
(INP) at the Faculty of Civil Engineering, Uni-
versity of Belgrade in the last decade, a novel 
software framework FREEVIB has been devel-
oped and validated. FREEVIB is object-ori-
ented software in Python environment, de-
signed to predict free vibration characteristics in 
a wide range of possible structural problems 
(stepped, stiffened and folded plate structures, 
implying isotropic or orthotropic material formu-
lations). The presented methodology still 
serves as a strong basis for further improve-
ments through the extensive research efforts of 
authors, their collaborators and students.   

Keywords: free vibration, dynamic stiffness 
method, software development, Python 

1. INTRODUCTION 

Dynamic stiffness method (DSM), also known 
in the literature as spectral element method 
(SEM), is nowadays used as an alternative to 
the finite element method (FEM) in the free vi-
bration analysis of different engineering struc-
tures [1, 2]. It is highly competitive against the 
FEM in terms of computational time and cost in 
mid and high frequency ranges where very fine 
mesh of finite elements is required for the com-
putation of the free vibration response. 

Main component of the DSM is the strong form 
solution of the governing equations of motion of 
the corresponding elastodynamic problem for-
mulated in the frequency domain, based on 
which frequency dependent dynamic stiffness 
matrix is formulated. As a consequence, struc-
tural discretization is frequency independent 
and affected only by the geometrical and/or ma-
terial discontinuities of the structure, implying 
that only one dynamic stiffness element can ex-
actly represent structural behavior at any fre-
quency. 
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First dynamic stiffness matrices have been for-
mulated for one-dimensional elements (beams 
and bars) for which closed-form solution of the 
governing equations of motion can be found. 
Kolousek [3] was the first who developed dy-
namic stiffness matrix for beam element, based 
on Bernoulli-Euler theory. Later on, dynamic 
stiffness matrices for wide range of one-dimen-
sional dynamic stiffness elements have been 
developed [4-7]. 

In a series of contributions [8-11], dynamic stiff-
ness matrices of two-dimensional elements 
have been derived and applied in the free vibra-
tion and buckling analysis of both isotropic and 
anisotropic long plate assemblies based on 
classical or first order shear deformation plate 
theory. In the works of Boscolo and Banerjee 
[12-17], dynamic stiffness elements of Levy-
type plates have been developed enabling free 
vibration study of isotropic and composite 
plates and stiffened plate assemblies. 

All afore mentioned studies were limited to 
plates and plate assemblies having special 
boundary conditions (i.e. two opposite edges 
simply supported), for which closed-form solu-
tions of the governing equations can be found. 
This issue has been overcome by Casimir et al. 
[18], who derived dynamic stiffness matrix for a 
completely free isotropic rectangular plate ele-
ment for transverse vibration based on classical 
plate theory (CPT), using the projection and su-
perposition methods.  

The research in the field of dynamic stiffness 
method at the Faculty of Civil Engineering, Uni-
versity of Belgrade, started in a frame of the re-
search project TR-36046: “Towards develop-
ment of sustainable cities: Influence of traffic in-
duced vibrations on buildings and humans”.  
Within the framework of the project, numerical 
model for dynamic analysis of soil-structure 
system has been formulated using the sub-
structure approach, where the structure has 
been modeled using dynamic stiffness ele-
ments, while for soil modeling, integral trans-
form method has been applied [19]. In a series 
of further studies, authors formulated dynamic 
stiffness matrices for a completely free rectan-
gular isotropic plate element based on the first 
order (FSDT) [20] and higher order shear defor-
mation theory (HSDT) [21], as well as for the 
plate element ongoing in-plane vibration [22]. 
Recently, the above formulations have been ex-
tended to the free vibration analysis of sand-
wich [23], symmetric cross-ply laminated com-
posite plates [24, 25], and composite stiffened 
plate assemblies [26]. Moreover, starting from 
the developed dynamic stiffness elements, ob-
ject-oriented software in Python environment – 

FREEVIB [27] has been developed, enabling 
free vibration analysis of a wide range of possi-
ble structural problems. Finally, recent efforts in 
this field are related to the development of the 
dynamic stiffness element of an open cylindrical 
shell [28, 29] and its implementation in 
FREEVIB.  

Main objective of the paper is to give an overview 
of the dynamic-stiffness-method-based compu-

tational model for vibration analysis of plates in-
corporated in the FREEVIB software, devel-
oped by the authors. 

2. FUNDAMENTALS OF THE DYNA-
MIC STIFFNESS FORMULATION 

The dynamic stiffness matrix of a correspond-
ing plate element is obtained through several 
steps. The first one is derivation of Euler-La-
grange equations of motion for the considered 
plate theory, by using the Hamilton’s principle 
in terms of the displacements. The next steps 
are explained as follows.  

Transformation of the governing equations 
of motion to frequency domain. The equa-
tions of motion are transformed into the fre-
quency domain by assuming a harmonic repre-
sentation of the displacement/rotation field: 

ˆ( , , ) ( , , ) i tu x y t u x y e   (1) 

In. Eq. (1), ˆ( , , )u x y  are the amplitudes of the 

displacement/rotation ˆ( , , )u x y t  in the fre-

quency domain. Having in mind that Eq. (1) is 
valid for all angular frequencies ω in the consid-
ered frequency range, the argument ω will be 
omitted in further representations. After the 
substitution of the above transformation into the 
governing equations of motion, the equations of 
motion are transformed into the following set of 
partial differential equations: 

ˆ( , ) 0Lu x y  (2) 

where L is the matrix of the differential opera-
tors [20-24] defined in terms of the plate stiff-
ness coefficients, the mass moments of inertia 
and the angular frequency ω. 

Superposition of symmetry contributions. 
Displacement or rotation amplitudes of a rec-

tangular plate element ˆ( , )u x y  can be pre-

sented as a superposition of four symmetry 
contributions: both symmetric (SS), symmetric 
- anti-symmetric (SA), anti-symmetric - sym-
metric (AS) and both anti-symmetric (AA), [20-
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24]. By the superposition of 4 symmetry contri-
butions, it is possible to analyze only one quar-
ter of a rectangular plate, which significantly re-
duces the size of the corresponding dynamic 
stiffness matrices. By using the method of sep-
aration of variables, the general solution for 
each symmetry contribution can be repre-
sented in the Fourier series form as: 

   

   

1 1

2 2

( , )




 



ij ij ij

m m

m

ij ij

m m

m

u x y U x f y

U y f x

 (3) 

In Eq. (3), ( , )iju x y  is the corresponding dis-

placement/rotation function,  1 ij

mU x  and 

 2 ij

mU y  (ij = SS, SA, AS or AA) are the un-

known displacement/ rotation functions, while 

 ij

mf y  and  ij

mf x  are the base trigonometric 

functions, depending on the symmetry case. In 
practical calculations, the infinite Fourier series 
must be truncated. Thus, the accuracy of solu-
tion depends on the number of terms in the gen-
eral solution. 

The solutions for all symmetry contributions are 
given in [20-24]. 

Projection method. The vector of displace-

ment components ˆ iju along plate boundaries is 

denoted as displacement vector ˆ ijq . The cor-

responding force vector Q̂
ij

 consists of force 

components along plate boundaries. Both vec-
tors are functions of spatial variables x and y, 
so they cannot be related explicitly, as in the 
case of one – dimensional elements. The issue 
can be overcome with the aid of the projection 
method [18]. Therefore, instead of using the 

vectors ˆ ij
q and ˆ ij

Q , new projection vectors 

ij
q  and ij

Q  are introduced, which components 

are the Fourier coefficients in the series expan-
sion (see [20-26] for details). 

The relation between the projection vectors ij
q

 
and ij

Q and the vector of integration constants 
ij

C  is obtained as [20-22]: 

, q D C Q F C
ij ij ij ij ij ij

D D  (4) 

Finally, by eliminating the vector Cij from Eq. (4) 
the following relation between the projection 

vectors ij
Q and 

ij
q  is obtained: 

 
1

ij ij ij ij ij ij

D D D



 Q F D q K q  (5) 

where ij

DtK is the dynamic stiffness matrix for 

the ij symmetry contribution. 

The dynamic stiffness matrix for a completely 
free dynamic stiffness element, which relates 
the projections of the forces and displacements 
along the four plate boundaries, is obtained by 
using the transformation matrix T (for details 
see [20-26]). The size of the dynamic stiffness 

matrix 
DK  depends on the number of terms in 

the general solution M, the type of the vibration 
problem (in plane or transverse) and applied 
plate theory (CPT, FSDT, HSDT). 

Finally, considering that transverse and in-
plane vibrations of a single plate represent two 
independent states, the dynamic stiffness ma-
trix of the single plate can be written as: 











Di

Dt
D

K

K
K ~

0

0
~

~

 

(7) 

In Eq. (7), 
DtK  denotes the dynamic stiffness 

matrix of plate element for transverse vibra-

tions, while 
DiK  is the dynamic stiffness matrix 

of plate element undergoing in-plane vibrations 
which can be determined in the same way as 

DtK .
 

Rotation of dynamic stiffness matrices to 
global coordinates. For two stiffened plate as-
semblies where plate 1 and plate 2 are con-
nected to each other with an arbitrary angle be-
tween them, vibrations of plate 1 causes vibra-
tions of the corresponding plate 2, and vice 
versa. Consequently, it is necessary to trans-
form the displacement and force projection vec-

tors q  and Q  defined in the local coordinate 

system of the single plate to the corresponding 

projection vectors 
*

q  and 
*

Q  in the global co-

ordinate system of the plate assembly. This is 
accomplished by using the rotation matrix TR, 
which depends on the number of terms in the 
general solution, angle between the local and 
global coordinate system and the selected dy-
namic stiffness element. After that, the dynamic 
stiffness matrix of the single plate in global co-
ordinate system is derived in the same way as 
in the conventional FEM. The assembly proce-
dure is then performed as in the conventional 
FEM.  
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Computation of natural frequencies and 
mode shapes. In the analysis, arbitrary bound-
ary conditions can be applied by removing the 
rows and columns of the global dynamic stiff-
ness matrix that correspond to the components 
of the constrained displacement projections. Af-
ter that, the natural frequencies can be com-
puted from the following equation: 

 ,det 0 KG
D nn  (8) 

where ,K
G
D nn  is the global dynamic stiffness 

sub-matrix of the plate assembly related to the 
unknown generalized displacement projections 

G
nq  of the plate assembly. Since the elements 

of the dynamic stiffness matrix ,K
G
D nn  contain 

transcendental functions, the solutions can be 
obtained using some of the search methods. To 
avoid numerical difficulties when calculating the 
zeroes of Eq. (8), the natural frequencies can 
be determined as maxima of the following ex-
pression [1]: 

 
 G

,

1
log

det





KD nn

g  (9) 

The expression (9) is computed for all frequen-
cies in the frequency range of interest with a 

frequency increment . Consequently, the ac-
curacy of the computed natural frequencies is 
affected only by the frequency increment. After 
the natural frequencies have been computed, 
the ith mode shape corresponding to the natural 

frequency i is obtained in the usual manner. 

3. DEVELOPMENT OF COMPUTER 
CODE FREEVIB 

Formulated dynamic stiffness elements served 
as basis for the development of computational 
framework for free vibration analysis of plate-
like structures. The object-oriented software 
FREEVIB has been developed at the Institute 
for Numerical Analysis and Design of Struc-
tures (INP) at the Faculty of Civil Engineering, 
University of Belgrade. 

FREEVIB is written in Python [30], which comes 
with a large standard library that covers areas 
such as string processing, software engineer-
ing and operating system interfaces. Object-ori-
ented design is introduced to enable code en-
capsulation, class inheritance and further code 
reusability. 

For input parameters related to the geometry, 
material and number of terms in trigonometric 
series (M), simple text file may be created in the 
prescribed format, or generated using the exist-
ing graphical pre-processors. Using the proce-
dure described in the previous sections, a vari-
ety of plate-like structural problems, illustrated 
in Fig. 1, can be analyzed: (a) individual plates, 
(b) plate assembly of arbitrary shape, (c) 
stepped plates, (d) stiffened plates, (e) cracked 
plates. In addition, different material properties 
of single- and multi-layer plates can be consid-
ered: (f) single layer isotropic or orthotropic 
plates, (g) sandwich panels, or (h) laminated 
composite plates. 

 

Figure 1. Structural problems which can be ana-
lyzed using the proposed computational framework 

In Fig. 2, general FREEVIB class structure is il-
lustrated. Note that DynStiffElement class is 

the super class which implements almost all 
methods related to the creation of the dynamic 
stiffness matrix. Detailed class structure can be 
found in [27]. 

 

Figure 2. FREEVIB class structure 

The so-far developed code could be extended 
by adding new dynamic stiffness element for-
mulations. The example is the open cylindrical 
shell element [28, 29]. The family of imple-
mented algorithms could be extended by add-
ing new analysis types, such as response or 
buckling analysis. With the rapid development 
of multicore CPU technique, using the multipro-
cessing module in Python’s Standard Library 
would enable the parallel execution of the code 
and speed up program execution. Namely, the 
solving of the equation (9) is time consuming, 
since it should be performed for every fre-
quency in the considered range. This process 
is mutually independent for each frequency, 
thus the parallelization of the code by using the 
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parallel FOR-loops would drastically increase 
the speed of the sequential execution. 

4. ILUSTRATIVE EXAMPLE 

To illustrate the reliability of the presented 
methodology, free vibration properties of the 5-
layer rectangular cross-laminated timber (CLT) 
panels have been derived using FREEVIB. 
FSDT-based dynamic stiffness elements (M=5) 
have been used that give accurate results for 
considered panels [31]. The panels are 2.5m 
wide (b), with different spans (a): 2.5m, 5.0m, 
10m and 15m. Considered panel thicknesses 
are 16cm and 20cm. The panels are simply 
supported along all edges (S-S-S-S) and com-
posed from timber of class C24 (E1 = 11000 

MPa, E2 = 370 MPa, 12 = 0.44, G12 = G13 = 690 

MPa, G23 = 50 MPa and  = 420 kg/m3). 

The results from FREEVIB are compared 
against the predictions from commonly used 
handbooks for CLT design [32, 33] and illus-
trated in Figure 3. 

 

Figure 3. Fundamental frequencies of 5-layer C24 
SSSS CLT panel considering different computa-
tional models: h=0.16m (left) and h=0.20m (right) 

Fundamental frequencies calculated using [32-
33] obviously are not matching the exact solu-
tion obtained using FREEVIB. Such high dis-
crepancies are due to the simplified (beam) 
models used in [32-33], which are unable to 
predict the free vibration characteristics for 
plates with all edges simply supported. Better 
agreement is achieved for plates with higher a/b 
ratio. Finally, as shown in [31], better agree-
ment would be achieved for plates with two op-
posite edges simply supported (SFSF). 

5. CONCLUSIONS 

An overview of the dynamic stiffness method 
and a family of novel dynamic stiffness ele-
ments developed at the Institute for Numerical 
Analysis and Design of Structures (INP) at the 
Faculty of Civil Engineering, University of Bel-
grade, has been presented in the paper. The 

dynamic stiffness elements have been imple-
mented in the object-oriented software 
FREEVIB enabling free vibration analysis of a 
wide range of plate-like structures, considering 
different plate theories, isotropic or orthotropic 
behavior and multi-layer plates. 

Free vibration study of the 5-layer rectangular 
CLT panel undergoing transverse vibration has 
demonstrated high accuracy and efficiency of 
the developed methodology, as well as its prac-
tical application. 
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