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DATA-DRIVEN TOOL FOR 
STRUCTURAL HEALTH 
MONITORING OF 
OPERATING WIND 
TURBINES 

The growing number of existing infrastructure 
with decreased or indeterminate reliability, and 
on the other hand, constant design of lighter, 
albeit more productive structures facilitate the 
adoption of automated Structural Health 
Monitoring (SHM) identification tools capable 
of unprejudiced diagnosis of in-service 
structures. In comparison with customarily 
exploited simulation-based approaches, data-
based schemes or hybrid analysis (data/finite 
element model) can often introduce a more 
objective perspective on the behavior of 
operating structures, and as a result can 
enable long-term, automated and even online 
assessment. 

Recent trends for energy conservation have 
placed the focus on Wind Turbine (WT) 
structures, which represent systems 
characterized with complex dynamics and 
alternating operating nature. We propose a 
diagnostic framework able to describe the 
variability of such monitored systems. The 
novel approach combines the Smoothness 
Priors Time Varying Autoregressive Moving 
Average (SP-TARMA) method for modeling 
the non-stationary structural response, and a 
Polynomial Chaos Expansion (PCE) 
probabilistic model for modeling the 
propagation of response uncertainty.  

The computational tool is applied on long-term 
data, collected from an active sensing system 
installed for four years on a real operating WT 
structure located in Dortmund, Germany. The 
long-term tracking of the obtained PCE-
SPTARMA Diagnostic Indicator (DI) is further 
assessed by means of a statistical analysis. 
The results demonstrate that the proposed 
treatment yields a DI sensitive to unfamiliar 
fluctuations in measured Environmental and 
Operational Parameters (EOP).  

Keywords: data-driven SHM, operating wind 
turbine, structural variability, environmental 
variability 
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1. INTRODUCTION AND CONCEPT 

Data-driven SHM tools hold the potential to 
reduce the multiple sources of uncertainty and 
variability typical for real systems, and thus 
become particularly valuable for infrastructures 
that bear critical importance in society. In this 
context, as result of today’s rising trends of 
energy management, wind turbines reached 
the forefront of significant infrastructures that 
demand instantaneous implementation.  

However, EOP-born variations in measured 
structural responses, known to mimic real 
damage states of the structure, underline the 
necessity of utilization of SHM strategies 
which rely on elimination or integration of 
environmental factors from/with obtained 
structural performance indicators [1-4, 6]. On 
the other hand, structures characterized with 
time-varying dynamics are resilient to 
traditionally applied Operational Modal 
Analysis (OMA)-based methods limited to 
implementation with time invariant systems [7].  

The proposed diagnostic tool represents a 
multicomponent algorithm with a “binocular” 
visualization of the problem since it is adept in 
providing a link between output-only vibration 
response data and measured EOPs, Figure 1.  

 

More precisely, the fluctuations that are typical 
for the inherent (short-term) system dynamics 
are modeled by means of a parametric SP-
TARMA method (Step 1). In a second step 
identified structural performance indicators, 
corresponding to short-term modeled 
responses, are integrated into a PCE tool. The 
PCE probabilistic modeling approach connects 
the variability of the structural response to the 
randomness of measured EOPs.  

Finally, the statistical model (Step 3) enables 
the long-term tracking of a selected PCE-
SPTARMA descriptive indicator and facilitates 
timely reaction to any identified changes in 
patterns or distributions of the selected output 
indicator.  

2. THEORY AND APPLICATION  

The described SHM strategy is applied on a 
0.5MW WT erected in 1997, located in the 
vicinity of Dortmund, Germany. The 
continuous measurement of acceleration data 
is recorded by triaxial accelerometers installed 
at five different height positions of the WT 
structure.  The vibration data is supported with 
SCADA data records, both sampled with the 
frequency of 100 Hz, Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Conceptual model of the SHM strategy and applied methods. 
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Figure 2.  Photo of the actual structure and 
schematic overview of utilized data. 

The nonstationary dynamics typical for an 
operating WT structure can be successfully 
tracked via the compact parametric 
formulation provided by the SP-TARMA 
models [2]. A full SP-TARMA model is 
described by an assemblage of three 
equations, one representing the modeled 
signal (system response), and two stochastic 
difference equations governing the time 
evolution of the unknown AR and MA 
parameters of the model. Thus, an adequate 
modelling of a measured nonstationary signal 
is ensured by proper selection of three user-
defined parameters, i.e. the AR/MA order n, 
the ratio of the residual variances v, and the 
order of the stochastic difference equations κ, 
Figure 3.  

The PCE tool is an uncertainty quantification 
method, which enables the relationship 
between outputs (structural response 
performance indicators) and inputs 
(environmental and operational loads) to the 
system. A PCE model can be described by a 
mathematical expansion of a random system 
output variable on multivariate polynomial 
chaos basis functions [2]. Spectral 
representations, such as the PCE method, rely 
on several regularity requirements, namely 
finite variance of the outputs, orthonormality of 
the polynomial basis, and statistical 
independence of the input variables [5].  

The statistical modelling is based on Control 
chart analysis on the obtained PCE-
SPTARMA residual (DI), Figure 4. The results 
from a univariate outlier analysis of SCADA 
records verify the sensitivity of the obtained 
PCE-SPTARMA model to novel fluctuations in 

measured EOPs. For a two-month training 
period, the validation set of the estimated DI 
illustrates that index values exceeding the ± 
3std thresholds (99.7% confidence intervals 
calculated for the fitted Gaussian distribution 
of the estimation set) can be linked to novel 
data ranges of the measured influencing 
agents, more precisely temperature and RPM 
values between months March and November 
2012, as well as April and September in year 
2013. 

 

Figure 3.  SP-TARMA frequency estimates for fitted 
model M(n=18, v=0.0001, κ=1) (spectrogram in the 

background). 

3. CONCLUSIONS  

The proposed data-based strategy delivered a 
sensitive PCE-SPTARMA diagnostic indicator 
able to capture the non-stationary response 
and the long-term response variability of the 
actual operating WT structure for a monitoring 
period of twenty one months. The obtained 
data-driven model verifies the future 
prospective of the strategy for development of 
an automated SHM diagnostic tool capable of 
separating benign EOP fluctuations from 
pattern alterations due to actual structural 
damage. The sensitivity of the diagnostic 
indicator to scheduled changes in operating 
regimes and system fluctuations of the WT 
structure will be sought in a following step. 
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Figure 4.   Two-month training set: Identified novel data (red points) within time history of 10-min mean 
values of measured SCADA and Control chart of the PCE-SPTARMA residual. 
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