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PRACTICAL APPLICATION 
OF RELIABILITY-BASED 
DESIGN WITH EXAMPLES 
INCLUDING RELIABILITY 
ASSESSMENT OF DESIGN 
APPROACH DA2* 

In this paper we look at the application of 
reliability-based design to various types of 
problems in a geotechnical design office.  For 
the selected design examples, comparisons 
are presented between the results from 
reliability analyses and those from traditional 
design methods such as working stress design 
and limit states design using design approach 
DA1-2. In addition, we compare the reliability 
of eccentrically loaded footings designed 
according to DA2 and DA2*. Our conclusion is 
that reliability-based design can readily be 
applied to problems with closed form solutions 
provided sufficient data is available to 
adequately characterise the input parameters.  
Eccentrically loaded footings designed 
according to DA2* are less reliable than those 
designed using design approach DA2 from 
EN1997-1.  Limit states design using design 
approach DA1-2 from EN1997-1 achieves 
fairly uniform levels of reliability for different 
types of structures and is suitable for routine 
design. 

Key words: Reliability-based design; 

Geotechnical design; Limit states design; 
Design approaches. 

1. INTRODUCTION  

A number of factors have combined to 
facilitate the application of reliability-based 
design methods in geotechnical engineering 
practice. These include faster computers, 
more efficient solution algorithms and 
increased understanding of the likely variation 
of input parameters to geotechnical design 
problems. In this paper, we compare the 
reliability of common geotechnical structures 
designed in accordance with Design Approach 
1 Combination 2 (DA1-2) from EN1997-1.  In 
the case of eccentrically loaded spread 
footings, this comparison is extended to 
include design approach DA2 from EN1997-1 
and the proposed DA2* design approach for 
spread footings.  
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2. METHODS OF RELIABILITY 
ANALYSIS 

The First Order Reliability Method (FORM) 
and Monte Carlo simulations can readily be 
applied to problems with closed-form 
solutions, i.e. problems where the solution can 
be found by substitution of the design 
parameters into equations which have explicit 
solutions. Examples of such problems are the 
bearing capacity of a footing or the stability of 
a retaining wall. In the context of a design 
office, FORM analyses may be undertaken 
using spread-sheets such as that developed 
by Low & Tang (2007). This spreadsheet 
requires a performance function g to be 
defined such that failure occurs when g < 0. 
Using the terminology of the Eurocodes, the 
performance function can be expressed as the 
difference between the effect of actions (E) 
and resistance (R), i.e. g = R - E.  The FORM 
algorithm determines the value of the reliability 

index  as the distance in units of standard 
deviation from the mean point (point in multi-
dimensional parameter space where all 
parameters assume their mean value) to the 
closest point on the failure surface boundary 
(g = 0), known as the design point. The 
probability of failure is computed by 
approximating the failure domain as a linear 
plane tangential to the failure surface at the 
design point. 

3. EXAMPLES 

The examples chosen were based on Orr et al 
(2005) and are shown in the first column of 
Figure 1. All these problems have closed form 
solutions.  In each example, the design 
determines one controlling dimension of the 
structure, such as the width of a footing or the 
length of a pile. A single soil type was 
assumed throughout, a cohesionless sand 

with a friction angle ’ = 32
o
 and a density = 

20 kN/m
3
. The statistical distributions, 

coefficients of variation and ratios of 
characteristic to mean loading were based on 
Retief and Dunaiski (2010) and Phoon and 
Kulhawy (1999). The characteristic values for 
imposed loads were taken as the upper 5% 
fractile. The characteristic value of the shear 
strength of the soil was selected as 28,8

o
, one 

standard deviation below the mean 
(Schneider, 1977) except in the case of piles 
where the selected value was 30,4

o
, half a 

standard deviation below the mean. Partial 
factors were based on the National Annex to 
BS EN 1990:2002 and National Annex to BS 

EN 1997:2004. The first step in the process 
was to find the “Eurocode-compliant” solution 
using characteristic values of loads and 
material properties. The solution obtained 
(minimum required value of B or L) is shown in 
the fourth column of Figure 1. Thereafter, the 
factor of safety was determined using 
unfactored values of the mean and 
characteristic values of the input parameters. 
The values obtained are given in Column 5 of 
Figure 1. Finally, the reliability index was 
determined using both FORM and Monte 
Carlo simulations (10

6
 trials). Variable vertical 

actions and shear strength were assumed to 
be log-normally distributed, variable horizontal 
actions Gumbel distributed and soil density 
normally distributed. The reliability indices and 
the FORM design points are given in the final 
two columns of Figure 1. Further details of the 
analysis and an assessment of the variation in 
reliability indices and factor of safety with 
changes in parameters are given in De Koker 
and Day (2017).The reliability indices in Figure 
1 show good agreement between the FORM 
and Monte Carlo methods indicating that 
FORM is suitable for use in many geotechnical 
problems. There is a remarkable consistency 
in the reliability indices (3,2 to 3,7) despite the 
different failure modes for the various 
examples. The factors of safety, however, 
varied widely between examples confirming 
that the factor of safety is a poor measure of 
reliability of a structure.  Limit states design 
according to EN1997-1 is considered suitable 
for routine design in preference to working 
stress design methods. 

4. RELIABILITY ASSESSMENT OF 
DA2* 

Design approach DA2* is a variation of design 
approach 2 in which the actions on a footing 
are combined before they are factored (Frank 
et al, 2004), i.e. all components of the load 
vector attract the same partial action factor. 
This approach is favoured by the German 
design specification as it yields economical 
designs with similar levels of safety to previous 
design methods based on the global safety 
concept (Vogt & Schuppener, 2006). Simpson 
(2007) queried the acceptability of design 
approach DA2* as it requires significantly 
narrower strip footings compared to other 
design approaches when footings are 
subjected to vertical and horizontal loads. To 
assess the reliability of DA2* in comparison to 
design approach DA2 from EN1997-1, a 
similar procedure was followed to that 
described above, i.e. the width of a footing 
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required to resist various combinations of 
vertical and horizontal loads was determined 

for both design approaches followed by a 
reliability analysis of the footing. 
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Figure 1.  Results of analysis for example problems
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The strip footing chosen for this analysis is the 
same example used by Simpson (2007) and is 
shown in Figure 2. The required width of 
footing for both design approaches is shown in 
Figure 3a and the corresponding reliability 

indices in Figure 3b. From Figure 3b, it is clear 
that the reliability the footing designed using 
DA2* is considerably lower than for design 
approach DA2 for high Hk/Vk. 
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Figure 2.  Strip footing example, DA2*
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    Figure 3a.  Required footing width      Figure 3b.  Reliability index 

5. CONCLUSIONS 

The First Order Reliability Method (FORM) is 
sufficiently accurate and easy to apply to 
justify its use in a geotechnical design office. 
The major problem remains obtaining 
sufficient data to justify the choice of input 
parameters. Limit states design is acceptable 
for routine design purposes. 

DA2* gives significantly lower levels of 
reliability for highly eccentric loads than DA2. 
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